Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer

Identifieur interne : 002886 ( Main/Repository ); précédent : 002885; suivant : 002887

On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer

Auteurs : RBID : Pascal:12-0036032

Descripteurs français

English descriptors

Abstract

Efficiency and efficiency retention in InGaN LEDs has recently received considerable attention. In this realm, we investigated internal quantum efficiency (IQE) and relative external quantum efficiency (EQE) of c-plane InGaN LEDs designed for emission at ∼420 nm from the active region which contains multiple quantum wells (MQWs) of different barrier height (either In0.01Ga0.99N or In0.06Ga0.94N barriers) and thickness (3 and 12 nm) as well as a 9-nm double heterostructure (DH). Pulsed electroluminescence (EL) and laser excitation power-dependent measurements indicated that both the relative EQE and the IQE were enhanced due to the incorporated two-layer InGaN stair-case electron injector (SEI) with indium mole fraction steps of 4 and 8% as compared to the conventional AlGaN electron blocking layer (EBL). Furthermore, the lowered In0.06Ga0.94N interwell barriers (LB) instead of the traditional In0.01Ga0.99N barriers improved the EQE and the IQE of MQW LEDs. Specifically, the MQW LEDs with the 6-period 2-nm In0.2Ga0.8N quantum well and 3-nm In0.06Ga0.94N barrier structure showed 6% higher IQE at an injected carrier density of 6 x 1018 cm-3 and 35% higher EQE as compared to that of the same structure with a higher In0.01Ga0.99N barrier. The DH LEDs showed 30% higher EQEs compared to MQW LEDs, albeit at a relatively higher injection current density of 150 A/cm2. The relatively low EQE in the DH LEDs at low injection levels is attributed to spatial separation of electrons and holes duc to confinement in the interfacial triangular well and thus the associated decrease in radiative efficiency and possible increase in nonradiative recombination due to degradation of material quality with increasing InGaN layer thickness.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0036032

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer</title>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Okur, S" uniqKey="Okur S">S. Okur</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avrutin, V" uniqKey="Avrutin V">V. Avrutin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, S J" uniqKey="Liu S">S. J. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ozg R, U" uniqKey="Ozg R U">U. Özg R</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morkoc, H" uniqKey="Morkoc H">H. Morkoc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, Virginia 23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hong, S M" uniqKey="Hong S">S. M. Hong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>EPISTAR Corporation</s1>
<s2>Hsinchu 300</s2>
<s3>TWN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>EPISTAR Corporation</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yen, S H" uniqKey="Yen S">S. H. Yen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>EPISTAR Corporation</s1>
<s2>Hsinchu 300</s2>
<s3>TWN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>EPISTAR Corporation</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hsu, T S" uniqKey="Hsu T">T. S. Hsu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>EPISTAR Corporation</s1>
<s2>Hsinchu 300</s2>
<s3>TWN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>EPISTAR Corporation</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matulionis, A" uniqKey="Matulionis A">A. Matulionis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology Vilnius</s1>
<s3>LTU</s3>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>Semiconductor Physics Institute of Center for Physical Science and Technology Vilnius</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0036032</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0036032 INIST</idno>
<idno type="RBID">Pascal:12-0036032</idno>
<idno type="wicri:Area/Main/Corpus">002426</idno>
<idno type="wicri:Area/Main/Repository">002886</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Barrier height</term>
<term>Charge carrier density</term>
<term>Confinement</term>
<term>Electroluminescence</term>
<term>Gallium Indium Nitrides Mixed</term>
<term>Heterostructures</term>
<term>Light emitting diode</term>
<term>Multiple quantum well</term>
<term>Non radiative recombination</term>
<term>Quantum yield</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rendement quantique</term>
<term>Diode électroluminescente</term>
<term>Couche active</term>
<term>Hauteur barrière</term>
<term>Electroluminescence</term>
<term>Densité porteur charge</term>
<term>Confinement</term>
<term>Recombinaison non radiative</term>
<term>Gallium Indium Nitrure Mixte</term>
<term>Puits quantique multiple</term>
<term>Hétérostructure</term>
<term>InGaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Efficiency and efficiency retention in InGaN LEDs has recently received considerable attention. In this realm, we investigated internal quantum efficiency (IQE) and relative external quantum efficiency (EQE) of c-plane InGaN LEDs designed for emission at ∼420 nm from the active region which contains multiple quantum wells (MQWs) of different barrier height (either In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N or In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N barriers) and thickness (3 and 12 nm) as well as a 9-nm double heterostructure (DH). Pulsed electroluminescence (EL) and laser excitation power-dependent measurements indicated that both the relative EQE and the IQE were enhanced due to the incorporated two-layer InGaN stair-case electron injector (SEI) with indium mole fraction steps of 4 and 8% as compared to the conventional AlGaN electron blocking layer (EBL). Furthermore, the lowered In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N interwell barriers (LB) instead of the traditional In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N barriers improved the EQE and the IQE of MQW LEDs. Specifically, the MQW LEDs with the 6-period 2-nm In
<sub>0.2</sub>
Ga
<sub>0.8</sub>
N quantum well and 3-nm In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N barrier structure showed 6% higher IQE at an injected carrier density of 6 x 10
<sup>18</sup>
cm
<sup>-3</sup>
and 35% higher EQE as compared to that of the same structure with a higher In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N barrier. The DH LEDs showed 30% higher EQEs compared to MQW LEDs, albeit at a relatively higher injection current density of 150 A/cm
<sup>2</sup>
. The relatively low EQE in the DH LEDs at low injection levels is attributed to spatial separation of electrons and holes duc to confinement in the interfacial triangular well and thus the associated decrease in radiative efficiency and possible increase in nonradiative recombination due to degradation of material quality with increasing InGaN layer thickness.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LI (X.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHANG (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>OKUR (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AVRUTIN (V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (S. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ÖZGÜR (U.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MORKOC (H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HONG (S. M.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YEN (S. H.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HSU (T. S.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>MATULIONIS (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, Virginia 23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>EPISTAR Corporation</s1>
<s2>Hsinchu 300</s2>
<s3>TWN</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Semiconductor Physics Institute of Center for Physical Science and Technology Vilnius</s1>
<s3>LTU</s3>
<sZ>11 aut.</sZ>
</fA14>
<fA20>
<s1>2907-2912</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000507355060320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0036032</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Efficiency and efficiency retention in InGaN LEDs has recently received considerable attention. In this realm, we investigated internal quantum efficiency (IQE) and relative external quantum efficiency (EQE) of c-plane InGaN LEDs designed for emission at ∼420 nm from the active region which contains multiple quantum wells (MQWs) of different barrier height (either In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N or In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N barriers) and thickness (3 and 12 nm) as well as a 9-nm double heterostructure (DH). Pulsed electroluminescence (EL) and laser excitation power-dependent measurements indicated that both the relative EQE and the IQE were enhanced due to the incorporated two-layer InGaN stair-case electron injector (SEI) with indium mole fraction steps of 4 and 8% as compared to the conventional AlGaN electron blocking layer (EBL). Furthermore, the lowered In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N interwell barriers (LB) instead of the traditional In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N barriers improved the EQE and the IQE of MQW LEDs. Specifically, the MQW LEDs with the 6-period 2-nm In
<sub>0.2</sub>
Ga
<sub>0.8</sub>
N quantum well and 3-nm In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
N barrier structure showed 6% higher IQE at an injected carrier density of 6 x 10
<sup>18</sup>
cm
<sup>-3</sup>
and 35% higher EQE as compared to that of the same structure with a higher In
<sub>0.01</sub>
Ga
<sub>0.99</sub>
N barrier. The DH LEDs showed 30% higher EQEs compared to MQW LEDs, albeit at a relatively higher injection current density of 150 A/cm
<sup>2</sup>
. The relatively low EQE in the DH LEDs at low injection levels is attributed to spatial separation of electrons and holes duc to confinement in the interfacial triangular well and thus the associated decrease in radiative efficiency and possible increase in nonradiative recombination due to degradation of material quality with increasing InGaN layer thickness.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Electroluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electroluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Electroluminiscencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Densité porteur charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Charge carrier density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Concentración portador carga</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Confinement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Confinement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Confinamiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Gallium Indium Nitrure Mixte</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gallium Indium Nitrides Mixed</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Galio Indio Nitruro Mixto</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>016</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002886 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002886 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0036032
   |texte=   On the quantum efficiency of InGaN light emitting diodes: Effects of active layer design, electron cooler, and electron blocking layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024